AD1

Saturday, 11 August 2018

Blanced Brackets


//problem :
//https://www.hackerrank.com/challenges/balanced-brackets/problem
//Solution
#include <iostream.h>
#include <string.h>
using namespace std;
// Complete the isBalanced function below.
string isBalanced(string s) {
stack <char> st;
char x;
if (s[0]==')'||s[0]=='}'||s[0]==']')
{
return "NO";
}
else
{
for(int i=0;i<s.length();i++)
{
if(s[i]=='('||s[i]=='{'||s[i]=='[')
{
st.push(s[i]);
continue;
}
switch(s[i])
{
case ')':
x=st.top();
st.pop();
if (x=='{' || x=='['){return "NO";}
break;
case '}':
x=st.top();
st.pop();
if(x=='('||x=='['){return "NO";}
break;
case ']':
x=st.top();
st.pop();
if(x=='('||x=='{'){return "NO";}
break;
}
}
if(st.empty()){return "YES";}
else {return "NO";}
}
}

Tuesday, 10 July 2018

Neural Network Tutorial

this tutorial about classifiation in machine learning -using neural network- about patient medical record data for Pima Indians and whether they had an onset of diabetes within five years
# the tutorial about patient medical record data for Pima Indians and whether they had an onset of diabetes within five years
# so we have a classification problem
from keras.models import Sequential
from keras.layers import Dense
import numpy
# fix random seed for reproducibility
numpy.random.seed(7)
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu'))
model.add(Dense(8, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
model.fit(X, Y, epochs=150, batch_size=10)
# evaluate the model
scores = model.evaluate(X, Y)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
view raw nn.py hosted with ❤ by GitHub

Friday, 22 June 2018

Mini-Max Sum

Problem :
https://www.hackerrank.com/challenges/mini-max-sum/problem

Solution:

import math
import os
import random
import re
import sys
# Complete the miniMaxSum function below.
def miniMaxSum(arr):
sum_list=[0,0,0,0,0]
for i in range(5):
for j in range(i,i+4):
sum_list[i]+=arr[j%5]
print(min(sum_list),max(sum_list))
if __name__ == '__main__':
arr = list(map(int, input().rstrip().split()))
miniMaxSum(arr)
view raw mini_max sum.py hosted with ❤ by GitHub

Wednesday, 30 May 2018

Side Diagonal

Statement

Given an integer n, create a two-dimensional array of size (n×n) and populate it as follows, with spaces between each character:
  • The positions on the minor diagonal (from the upper right to the lower left corner) receive 1 .
  • The positions above this diagonal recieve 0 .
  • The positions below the diagonal receive 2 .
Print the elements of the resulting array

Solution

#Problem : https://snakify.org/lessons/two_dimensional_lists_arrays/problems/secondary_diagonal/
n = int(input())
a=[[0 for x in range(n)]for y in range(n)]
for i in range(n):
for j in range(n):
a[i][n-i-1]=1
for y in range (n-i,n):
a[i][y]=2
print(a[i][j],end=" ")
print('\n')
 

Friday, 11 May 2018

The diagonal parallel to the main

Statement

Given an integer n, produce a two-dimensional array of size and complete it according to the following rules, and print with a single space between characters:
  • On the main diagonal write .
  • On the diagonals adjacent to the main, write .
  • On the next adjacent diagonals write and so forth.
Print the elements of the resulting array.
sample 
n=7
0 1 2 3 4 5 6
1 0 1 2 3 4 5
2 1 0 1 2 3 4
3 2 1 0 1 2 3
4 3 2 1 0 1 2
5 4 3 2 1 0 1
6 5 4 3 2 1 0
n= int(input())
b=[[abs(x-y) for x in range(n)]for y in range(n)]
for i in range(n):
for j in range(n):
print(b[i][j],end=" ")
print('\n')
view raw diagonal.py hosted with ❤ by GitHub

Chess Board

Given two numbers  and . Create a two-dimensional array of size and populate it with the characters "." and "*" in a checkerboard pattern. The top left corner should have the character "." 


above figure shows the main chess board pattern, note that "." means white and "*" means black

n,m = map(int,input().split())
b=[['. ' for x in range(m)]for y in range(n)]
for i in range(n):
for j in range(m):
if(i%2==0 and j%2!=0):
b[i][j]='* '
elif(i%2!=0 and j%2==0):
b[i][j]='* '
for i in range(n):
for j in range(m):
print(b[i][j],end="")
print('\n')
view raw chess board.py hosted with ❤ by GitHub

Saturday, 28 April 2018

Unique elements

Given a list of numbers, find and print the elements that appear in the list only once
example 
input: 
4 3 5 2 5 1 3 5
output:
1
2
4

from collections import Counter
a = [int(x) for x in input().split()]
c=Counter(a)
for key in c.keys():
if c[key]==1:print(key)

Saturday, 20 January 2018

Implementing Linear Regression Algorithm in Python


in this PDF created by me , a short and good introduction into one of the most popular machine learning algorithms it is called Linear regression
in this tutorial we deal with linear regression with single variable
check attached file

Linear Regression.PDF 
import matplotlib.pyplot as plt
import pandas as pnds
import numpy as np
# First step we may consider while implementing Machine Learning algorithm is to visualize our data set
# reading data from csv file
dataset=pnds.read_csv('TV.csv')
# read_csv() return pandas data frame
# Data Frame in pandas can be considered for simplicity a two dimensional array (matrix) composed from rows and columns
# then we may print all data set items to check that every thing is ok
# output will be in matrix from
print(dataset.iloc[:,:])
# next we will scatter plot money spent on TV advertising vs sales
dataset.plot(kind='scatter',x='TV',y='sales')
l1=pnds.Series.tolist(dataset)
# Define Our main variables
x=np.zeros((200,1))
Y=np.zeros((200,1))
X=np.zeros((200,2))
i=0
for item in l1:
x[i,0]=item[0]
Y[i,0]=item[1]
i=i+1
X=np.concatenate((np.ones((200,1)),x),axis=1)
theta=np.linalg.lstsq(X,Y)[0] # solving the system of linear equation using least square method
print(theta)
plt.plot(x,np.dot(X,theta),color="red")
plt.show()
view raw linear_reg.py hosted with ❤ by GitHub



Friday, 22 December 2017

Reverse words in a given string

Problem

https://practice.geeksforgeeks.org/problems/reverse-words-in-a-given-string/0

Solution

#problem link
# https://practice.geeksforgeeks.org/problems/reverse-words-in-a-given-string/0
#code
T=int(input())#Test cases
for t in range(0,T):#looping through all test cases
string=[x for x in input().split(".")]
print(*string[::-1],sep='.')
view raw T1.py hosted with ❤ by GitHub
 

Sunday, 17 December 2017

Key Pair
Problem :
 https://practice.geeksforgeeks.org/problems/key-pair/0
Solution
#code
T=int(input())#Test cases
for t in range(0,T):#looping through all test cases
N_X = [int(x) for x in input().split()]
flag=0
A=[int(y) for y in input().split()]#read elements separated by space
for a in range(N_X[0]):
if N_X[1]-A[a] in A:#if number complement found in A[] print yes
print("Yes")
flag=1
break
if(flag==0):
print("No")
view raw KeyPair.py hosted with ❤ by GitHub